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There are a number of important advantages in using free jets, compared to other experi- 
mental methods in physical kinetics [i]: the possibility of realizing the simplest one- 
dimensional radial steady flow; the self-modeling nature of the structure of the jet and the 
distribution of parameters in it; and the possibility of controlling the rates of relaxation 
processes. 

These factors considerably facilitate the theoretical analysis of the results. The lat- 
est measured nonequilibrium molecular distribution functions for velocity [2, 3], rotational 
[4, 5], and vibrational [6-8] energy levels have been used to find the parameters of the elas- 
tic and anisotropic interaction potentials [3], and also the rate constants for energy ex- 
change between the internal degrees of freedom [9, i0]. This is done by solving the kinetic 
equations describing the corresponding relaxation process, with the help of certain model- 
dependent expressions for the interaction potential or the rate constants. The parameters 
of the model are determined by comparing the experimental data with the solution of the sys- 
tem of kinetic equations; the problem is drastically simplified if the solution can be found 
in analytical form. An analytical solution of the system of relaxation equations would also 
simplify the study of the effect of coupling between different relaxation processes in jets 
(for example, the effect of condensation on the rotational [ii] and vibrational [8] 
relaxation). 

In this connection we develop an analytical method [12, 13] of solving a system of re- 
laxation equations of the detailed balance type, describing, for an appropriate choice of rate 
constants, rotational and vibrational relaxation, and also nonequilibrium condensation (in 
the quasichemical model). After transforming from the population densities to smoother func- 
tions, and after a nonlinear change of variables, the system reduces to a form which is much 
easier to solve (both analytically and numerically). It is shown that for isentropic flow, 
there are several zones along the axis of the jet having different relaxation mechanisms. 
An iterative method of solving the system of relaxation equations is described. The method 
uses an optimum choice of the zeroth approximation in each of the zones. 

i. Statement of the Problem. In a freely expanding jet, the rotational (vibrational) 
relaxation of a dilute diatomic gas impurity in a monatomic gas solvent is described by the 
system of relaxation equations 

u a~ 
d dz ---- n ~ [Kj+~jNj+~ - -  (Kj,j+~ + Kj,j-6) Nj + Kj_8,jNj_~]. ( 1 . 1 )  
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Here Nj = n j / n ;  n = ~ nj  i s  t he  number d e n s i t y  o f  t he  m o l e c u l a r  gas;  nj i s  t he  p o p u l a t i o n  

d e n s i t y  o f  t h e  j - t h e n e r g y  l e v e l ;  u i s  t he  hydrodynamic v e l o c i t y ;  x i s  t h e  c o o r d i n a t e  a long 
t h e  a x i s  o f  t h e  j e t ,  no rma l i zed  t o  t he  n o z z l e  d i ame te r  d; K i , j ( T )  i s  t he  r a t e  c o n s t a n t  o f  
ene rgy  exchange between t he  i n t e r n a l  deg ree s  of  f reedom of  t he  r e l a x i n g  gas and t he  t r a n s -  
l a t i o n a l  d e g r e e s  o f  f reedom of  t h e  monatomic gas a t  t e m p e r a t u r e  T. 

The v a r i a t i o n  of  t he  gasdynamica l  p a r a m e t e r s  a long t he  ax i s  o f  t he  j e t  w i l l  be d e s c r i b e d  
by t h e  i s e n t r o p i c  fo rmulas  

r(x) t u(z) M(x) n(x) [F(x)]-I/(v-1), y=Cp/Cv~ ( 1 . 2 )  
r o = F(~)  ~o ] / F - - ~ '  "o 

where 

F (x) ----- i + 2 . ~  M ~ (x); (1.3) 
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To, a0, n o are the temperature, speed of sound, and density in the adiabatically and isen- 
tropically braked gas. For the Mach number M(x) the following empirical formula [14] is used 

/A(x--Xo)V 
- : - -  I r + l  i + 

2A y -- t (x -- x0)~'-I 
M(x) = { { dM (x,) x -- x, ,  X < X , .  

M (x.) exp dz M (z,"-)J' 

C 
(x --  Xo)~(v-~ ~ x ~ X,~: ( 1 . 4  ) 

The parameter x, is chosen from the condition M(0) = i. The exponential approximation in 
(1.4) gives a smooth matching of the two curves at the point x = x,. 

We assume a Boltzmann distribution over the cross section of the nozzle. The correspond- 

ing temperature is given by T = T , = T o / ( I + L ~  2) and 

Q-'W~.) exp --k--~'. = N~ (T,). 

Here gj is the multiplicity of the degenerate level j; Q(T,) is the partition function; Ej 
is the energy of the jth level. 

2. Analysis of the System of Relaxation Equations. In place of the concentrations 
Nj(x), we introduce the smooth functions zj(x) which give the deviation of the distribution 
functions from the equilibrium distribution functions: 

z~ (x) = ~ (x)lN~ ( r  (z ) ) .  

I t  f o l l o w s  from ( 1 . 1 )  t h a t  z j  s a t i s f i e s  

~ ' ~ r  ~+~ 
--~, : -  ~ [:~*~'~ ~ .  ~*~ - (K~,~+~ 

We represent zj+ 6 in the form 

( 2 . 1 )  

N~ Z~_6] - zj dN B 
+ K~,i_~) zi + Ki_~,~ ~ ~ ~ - -  K (z). ( 2 .2  ) 

zj+8(x)=z~(x)Ilaj+~(x)1~+~(x), a~-- g~'~+: ~ . 
i=0 . Km+l,m .u 1 ( 2 . 3 )  

After substitution of (2.3) into (2.2) and a series of reductions similar to those discussed 
in [13], we obtain the following system of equations for the new unknown functions fj(x): 

t df~ 
15 dx - -  R~ (1~, x) + e~(f, x )+  r~(x), ( 2 . 4 )  

where 

u 6 u 6 

- -  I I j ,~  nj-+~,8 - -  rI7,6,: 13~ 6~ = (Kj , j+6 - -  K~+:,~+6+1)  + ( K j a _ 6  - -  K ~ + ~ , j - 6 + 0 ;  

(2.5) 

~-=0~I r f~ -- / ] ~]~,8-  i " i=OH 'j+i--6+l ]['][j'+l,6 " 

d Kj+: j  
F i = - ~  I n - - -  

Kj,j+ 1' 

6 " ~--:I / ~ ~ (1 6--1 )r 
~-,}6) = ]j [:~--!LIo ~)I-[~6 -- % -- n T)I'I?+l,'] -{- ]~6[( I 

In (2.5) we have introduced the notation: 

~rB 6-i N B 8-1 
i i +  ~. ~'~+6 "[I j-8 - :  = nJ+Sd-"Z~T~-'.,i i=0 a~+i, II~,6 = K i _ 8 , j - ~ - -  j' i l~_0aJ+i_6.= 

In order to satisfy the principle of detailed balance, we must set aj = 1 for all j. 
Then Hj,6 +- = Kj,j_+6, 

B 

d 5~ (T(x)) . E~+ I-Ej d l n T ( x ) > 0 ,  
r j  = ~ In N~+I (r (z)) = kr dx 

and the coefficients in the expression for Rj satisfy the condition 

=?)+ ~)+ ~?>= 0. 

(2.6) 

(2.7) 
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Fig. 1 

If the functions fj(x) depend only weakly on j, then we obtain from (2.5) 

IsM, x)l << 1. 

In the case of a Boltzmann distribution we have from (2.3) 

and hence 

( 2 . 8 )  

(2.9) 

~j (~)~ O, Rj (l~)------ O. (2. i0) 

For small deviations from equilibrium [fj = 1 + %Tj, ~ << i, Tj - ~i = 0(~)] we have from 
(2.7) and (2.10) 

Rs = o ( z ) ,  ~j = o(~). ( 2 . 1 1 )  

For  t h e  i s e n t r o p i c  f l o w  o f  a gas  m i x t u r e  d e s c r i b e d  by ( 1 . 2 )  t h r o u g h  ( 1 . 4 )  w i t h  7 > 3 /2  
(a weak diatomic gas impurity in a monatomic gas) it follows from (2.6) that Fj' (x) > 0, 
i.e. Fj(x) increases monotonically from the initial value 

Ej+ 1 --  E i . r (o) = ( M(x,) dx J ( 2 . 1 2 )  

and behaves at large x as 

�9 Ej+~ - ~ A~ (Y _ i) 2 (x-- Xo) ~-3. 

However  t h e  f a c t o r  n ( x ) d / u ( x )  in  R j ( x )  i n  ( 2 . 4 )  d e c r e a s e s  m o n o t o n i c a l l y  and f o r  x >> x ,  

n(x)  d ~ .  nod 2 

u(x) x~x, a o ( ? - - t )  A 3(x-xo)a(~-D" ( 2 . 1 3 )  

Since at low temperature the deactivation rate constants in Rj(fj, x) become slowly varying 
functions of T [15], at large x the dominant contribution to the right hand side of (2.4) is 
the term Fj(x). 

From these estimates we draw the following conclusions: 

i. If the Boltzmann distribution (1.5) is specified at the cross section of the nozzle, 
then in view of (2.9) and (2.10), the departure of the internal degrees of freedom from equi- 
librium in the initial part of the jet is determined by the term Fj(x) in (2.4), and hence, 
according to (2.6) by the gasdynamical characteristics of the flow and by the spectrum of the 
molecules, and not by the properties of the intermolecular interaction. 

2. Suppose Rj(x) < 0 in a certain region. Then in this region there can be a situation 
in which the terms Fj(x) and Rj(x) cancel out one another [Fj + Rj = o(~)] and then it is 
necessary to take into account all of the terms on the right hand side of (2.4), in spite of 
(2.8) and (2.11). In this case we obtaina"quasistationary" distribution given by the condition 

RJ(/j, X) + rj(X) + ~j(f, X) = 0o (2 . 14 )  

3. In all other cases the nondiagonal term in f in (2.4) ej can contribute significantly 
to the rate of change of fj(x) only for distributions with a strong dependence of fj on j, 
i.e., only in the case of a significant deviation from equilibrium. For distributions which 
are smooth in j, this term can be included using perturbation theory. 

4. When x >> x, the rate of change of fj, according to (2.12) and (2.13), is determined 
by the term Fj(x), as in the initial part of the jet. 

Hence there are five zones on the axis of the jet, characterized by different relaxa- 
tion regimes (Fig. i). 
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3. Solution of the System of Relaxation Equations. We attempt to solve the system (2.4) 
by iteration. However since the contributions of the different terms on the right hand side 
of (2.4) are significantly different in the different regions along the axis of the jet (Fig. 
i), it is necessary to consider the optimum choice of a zeroth approximation in each of the 
relaxation regimes. 

On the segment [0, x I] we choose as a zeroth approximation the solution of the Cauchy 
problem 

df(I) 
1 -j.0 =Fj(x), (~) 11.0 (0) = 1. ( 3 . 1 )  

Using (2.1), (2.3), and (2.6), we find from (3.1) 

/<, N~(r(x))/~ (r,) (3.2) 
,o (x) = NL ' ~r (~))/~vL~ : , )  

o r  

N(I) , �9 ~o .u J+L0~z) = ~j+~ __ . ~+~(r,) ( 3 . 3 )  
N(D x N ~ - -  NB " j,0 ( ) j (r,) 

The s o l u t i o n  ( 3 . 3 )  d e s c r i b e s  a s e t  o f  p o p u l a t i o n  d e n s i t i e s  in  which  t h e  uppe r  l e v e l s  become 
o v e r p o p u l a t e d  and t h e  lower  l e v e l s  becomes d e p o p u l a t e d  ( F i g .  2 ) ;  t h i s  i s  c o n s i s t e n t  w i t h  t h e  
e x p e r i m e n t a l  d a t a  [4 ,  5] on t h e  r o t a t i o n a l  r e l a x a t i o n  o f  n i t r o g e n  m o l e c u l e s  in  f r e e  j e t s  
(curves i and 2: NjB(t(x)), Nj(x) for x > 0; curve 3: NjB(T,) for x = 0. 

We obtain from (2.4) for the successive approximations 

d~(I) 
"~§ ~ : :  x) + ~j(f~,  x) + rj(~), ~(I) dz = ~,j ~jj.k, ( 3 . 4 )  

Jj ,h+l  

from which it follows, with the help of (3.1), that 

~" = ~ "  [Rj :'~" ~j(~),  ~ d~ ( 3 . 5 )  :j,h+l (x) Jj,0 (x) exp ~) + ~]j,h, 

S i n c e  a l l  f u n c t i o n s  a p p e a r i n g  in  ( 2 . 4 )  a r e  c o n t i n u o u s  on [0 ,  x l ] ,  and f j ( x )  > 0, t h e  r i g h t -  
hand s i d e  o f  t h i s  e q u a t i o n  s a t i s f i e s  t h e  L i p s c h i t z  c o n d i t i o n ,  which e n s u r e s  t h a t  t h e  s e q u e n c e  
o f  i t e r a t i o n s  ( 3 . 5 )  c o n v e r g e s  t o  t h e  s o l u t i o n  o f  t h e  Cauchy p rob l em.  The c o n c e n t r a t i o n s  
Nj(1)(x) can be found in terms of the functions fj(1)(x) using relations (2.3) and (2.1). 

On the segment [xl, x 2] in case a (see Fig. i) the zeroth approximation can be taken to 
be the "quasistationary" distribution given by the condition (2.14). However it is simpler 
to find it by solving the following system of equations derivable from (2.2) in this case, 
rather than by solving the system (2.14): 

K .(II) ~ .Z(II)  ~ ~(II) 

u d B (3.6) Kj ~ Kjj+I + KLj_ I + ~-~ -~z In Nj (T (x)). 

Because the temperature of the gas drops rapidly along the axis of the jet, only single-quan- 
tum transitions (6 = i) are taken into account in (3.6); multi-quanta transitions will be 
taken into account in the higher order approximations. The solution of (3.6) can be written 
in the form 
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�9 [ j - - 1  r~ ] _(II) .(1I) ~ [ - [ ~ ,  __ ~ Kj+I,iKL,+I + L.,Sj Xo,o ' d.,j +1, 0 ~ 
i=0 i,i+l KiKi+l 

(3.7) 

where the coefficients pj are calculated from the recursion relation 

pj = p.i-I + KLs--1Kj-I'5 ( ~  K~+I'~KI'i:F~ ps_2), po = p~ = P2 =O,. 
Ki-lK5 \i=0 KiKi+l 

and z 0 , 0 ( I I ) ( x )  i s  c a l c u l a t e d  f rom t h e  n o r m a l i z a t i o n  c o n d i t i o n  

Z Ni (x) ---- ~, z 5 (x) N) ( r  (x)) = i .  

For the higher-order approximations it follows from (2.2) that dzj,k+z(ll)/dx = i(z(kn)), 
and therefore 

Z(II) , , 
j,~+, ~ )  = J K [ z l  ") (~)] a t  + ~ f ) ( ~ , ) .  

x 1 

As a zeroth approximation on the segment [x2, xa] we take the solution of the Cauchy 
problem 

df(.In) (ID 
{ "a,O R (~(III)~ #(III) i~ ~t ZJ+l ('x2) 

/(III)5,0 d z  ~ J IlJ,O 1~ 15,0 I.""21 ----" aj (x2) z~ii ) (x2) �9 

I n c l u d i n g  o n l y  s i n g l e - q u a n t u m  t r a n s i t i o n s  (6 = 1) i n  R j ,  we h a v e  [13] 

i(III)/x ~ + (l -- f (nl) ~(m, ,~  i + 5,o ~ ~, , 5,0 (x~)) - , .  
yS,0 ~ 1 ~  ' ~(III) rx ~ { t - - / ( In)Ix  ~ 

i + . 5 , o  ~ 2y +~ .  i,o ~ 2/1 

:% ~ E5 (~) [o 9 (g)+ Tj (g)] d~-- Ej (z) 

$2 u(g) i ( g ) [ ~  

l; / E 5 (x) ------ exp n (g) d [a 5 ( ~ ) .  75 (~)] a~ 
x 2 

( 3 . 8 )  

(3 .9 )  

The higher order approximations are found from the system (3.4) 

.,~+1 (~) = 15' )~xp , . , ~ ,  ~) + 

where only multi-quanta transitions (6 > 2) are taken into account in Rj'. 

On the segment [x 3, x 4 ] the solution is constructed in the same way as on the segment 
[xl, x2]: from the zeroth approximation (3.7) with an appropriate change of initial param- 
eters. Finally for x _> x 4 the initial approximation is chosen in the same way as on the first 
segment [0, xl]. 

The most complicated case is the choice of the optimum zeroth approximations on segments 
II and IV (see Fig. i) in case b, i.e., when the terms F~ and R. in (2.4) are positive quan- 

J J 
titles of the same order. Even in the approximation of single-quantum transitions, instead 
of (3.8) we have the following expression from (2.4) 

d0,o ,d r.(1),2 vj,)] dx : [~j n,o + ~:)h,o + + h,orj. (3 lO) 

Each of the equations of the system (3.10) is a general Riccati equation with the sum of 
the coefficients not equal to zero. Therefore unlike (3.8), their integration requires a 
separate treatment. 

Analyzing the results, we make the following conclusions: 
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First, the solution (3.2) and (3.3) of the system (3.1) describes the experimentally 
observed redistribution of internal energy in the free expansion of a molecular gas, in par- 
ticular the overpopulation of the upper levels and the underpopulation of the lower levels, 
in comparison with a Boltzmann distribution. 

Second, according to (2.6), the right-hand side of (3.1) is proportional to Ej+ l - Ej. 
Taking into account the dispersion of the rotational spectrum of diatomic molecules, rotation- 
al nonequilibrium in an expanding jet appears primarily in the upper levels; this also agrees 
with the experimental data [4, 5]. 

Third, in order to reproduce the rate constants of rotational (vibrational) energy ex- 
change from the relaxation experiments, it is necessary to take into account the zones shown 
in Fig. 1 with different relaxation mechanisms, because the conventional methods are applica- 
ble only in zone III, and possibly in the transitional zones II and IV. Therefore in each 
case the boundaries xl, x2, x3, x 4 of the intervals must be estimated. 

Using a generalization of the solution (3.9) of the system (3.8) [13], the iteration 
method employed in the present paper to integrate (i.i) can also be applied to the case when 
intermolecular rotational-rotational or vibrational-vibrational energy exchange is taken in- 
to account. It can also be useful in the numerical solution of the relaxation equations, 
since they form a system of stiff equations and the use of special methods is necessary (dif- 
ferent variants of the Gere method, for example). 
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